Practical Routing f iior Delay Tolerant Networks

Evan Jones Lily Li Paul Ward

The Problem: Routing in DTNs

Get data from the source to the destination without an end-to-end connection

Previous Work: Epidemic Routing

 $\label{eq:2} \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}$ Eventually, all buffers contain the same messages

Advantages:

- **Very robust**
- Zero knowledge

Disadvantages:

- Many messages exchanged
- **Need large buffer**

Previous Work: Shortest Paths

Minimize metric to minimize resources consumed

Advantages:

- **F**ew transmissions
- **Low buffer requirements**

Disadvantage:

Requires predictable schedules

Design Goals

Deployable

- \Box Self configuring
- \Box Robust to changes and failures
- \mathcal{L}^{max} Efficient use of buffer and network resources
- **Reliable delivery**

Optimization Criteria

- $\mathcal{L}_{\mathcal{A}}$ Maximize delivery ratio
- $\frac{1}{2}$ Minimize delay
- $\frac{1}{2}$ Minimize buffer consumption
- \mathbb{R}^3 Minimize number of transmissions

Path Metrics: Expected Delay

- Minimum Expected Delay (MED)
	- \Box Compute the expected delay for each hop
	- \Box Minimize end-to-end expected delay
	- Minimum Estimated Expected Delay (MEED)
		- -Compute expected delay for the observed history

Topology Distribution: Link State

Natural match for epidemic protocol

- $\frac{1}{2}$ Link state: flood link state to all nodes
- \mathbb{R}^3 Epidemic: propagate a message to all nodes
- Complete update after a single exchange

Routing Decision Time

- Source routing
	- \Box Cannot react to topology changes
	- Per hop routing
		- -If messages wait for a long time, same problem
- ~ 10 Per contact routing
	- \Box Recompute routing for all messages on each connection
	- \Box Takes advantage of opportunistic connectivity
	- \Box Frequently recompute routing table

Short Circuiting

When link is up: link $cost = link$ latency

 $\mathcal{L}_{\mathcal{A}}$ Permits messages to take advantage of good timing

Short Circuiting

Short Circuiting

Loop Free Routing

Nust make decisions with the same state

Traditional networks

State does not change while data is in transit

Delay tolerant networks

■ Want to be able to adapt while data is in transit

Performance Evaluation

- Compare five protocols:
	- □ Earliest Delivery (ED)
	- \square Minimum Expected Delay (MED)
	- □ MED Per Contact
	- \square Epidemic
	- Minimum Estimated Expected Delay (MEED)
- **Network layer simulator**

Scenario

- **Based on wireless LAN usage traces from** Dartmouth College
	- □ More than 2000 users
	- \square More than 500 access points
	- \Box 2 years
- **Represents mobile users forming an ad-hoc DTN**
- **E** "Random" mobility with statistical regularity

Dartmouth Data

Dartmouth Data

Scenario Generation

Too much data!

- Only use one month of data
- Select 30 connected users
- 1. Pick a node at random
- 2. Put its "good" neighbours in a set
- 3. Select node at random from the set
- 4. Repeat 2 until you have N nodes

Simulation Parameters

- 30 nodes
- **10 topologies**
- Bidirectional traffic
- Each node sends 12 messages every 12 hours
- **10 000 bytes per message**

Delivery Ratio Over Buffer Size

Latency Over Buffer

Conclusions

- **Link state is an excellent fit with epidemic**
- **MEED: Reasonable performance without** schedule
- **Epidemic performance is buffer limited** \Box Close to optimal with lots of resources
- **Per-contact routing**
	- \Box Decreases delay

Future Work

- **Different data sets**
- **Multiple copies**
- **Experimental deployments of DTNs**
- **Better metrics**
- Use topology for directed multiple copy routing

Questions?