
Practical Routing in Delay-Tolerant Networks

Evan P. C. Jones
ejones@uwaterloo.ca

Lily Li
l7li@uwaterloo.ca

Paul A. S. Ward
pasward@uwaterloo.ca

Electrical & Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT

Delay-tolerant networks (DTNs) have the potential to connect de-
vices and areas of the world that are under-served by current net-
works. A critical challenge for DTNs is determining routes through
the network without ever having an end-to-end connection, or even
knowing which “routers” will be connected at any given time. Prior
approaches have focused either on epidemic message replication
or on knowledge of the connectivity schedule. The epidemic ap-
proach of replicating messages to all nodes is expensive and does
not appear to scale well with increasing load. It can, however, op-
erate without any prior network configuration. The alternatives, by
requiring a priori connectivity knowledge, appear infeasible for a
self-configuring network.

In this paper we present a practical routing protocol that only
uses observed information about the network. We designed a met-
ric that estimates how long a message will have to wait before it
can be transferred to the next hop. The topology is distributed us-
ing a link-state routing protocol, where the link-state packets are
“flooded” using epidemic routing. The routing is recomputed when
connections are established. Messages are exchanged if the topol-
ogy suggests that a connected node is “closer” than the current
node.

We demonstrate through simulation that our protocol provides
performance similar to that of schemes that have global knowledge
of the network topology, yet without requiring that knowledge. Fur-
ther, it requires a significantly smaller quantity of buffer, suggest-
ing that our approach will scale with the number of messages in the
network, where replication approaches may not.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols

General Terms

Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05 Workshops, August 22–26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

Keywords
Delay tolerant network, Route metrics, Routing

1. Introduction
Delay-tolerant networks (DTNs) have the potential to connect

devices and areas of the world that are not well-served by current
networking technology. Instead of relying on end-to-end network
connectivity, DTNs take advantage of temporary connections to re-
lay data in a fashion similar to the postal network [6]. These net-
works could be useful in scenarios ranging from interconnecting
sensors to connecting remote regions of the world.

One obstacle that currently limits deployment of these networks
is that it is difficult to determine how to get data from the source
to the destination. Current DTN-like networks have been built us-
ing static routing [11, 14]. This is an effective approach for small
networks with simple topologies. However, the benefit of these net-
works will increase if they can be scaled to service larger areas. To
achieve this goal, routing protocols are needed to automate network
configuration.

This paper presents a routing protocol designed to be easy to de-
ploy in order to accelerate the use of DTNs. This philosophy led to
three design goals. First, the routing must be self-configuring. This
is critical for equipment that may be deployed far from network ex-
perts, and to maintain connectivity in the face of failure. Second,
the protocol must provide acceptable performance over a wide va-
riety of connectivity patterns. Finally, it must make efficient use
of buffer and network resources, being scalable with the number of
messages delivered.

We use a simplified version of the DTN model presented by Jain
et al. [9]. We model the network as an undirected graph where
nodes are connected by bidirectional links called contacts. A con-
tact represents an opportunity for the connected nodes to exchange
data. It begins at some point in time and persists for a finite du-
ration. When a contact is up (i.e. the nodes that form the contact
are connected), it has a constant link bandwidth and negligible de-
lay. Bidirectionality implies that our protocol will not operate in
networks with unidirectional links, such as satellite connections.
The assumption of constant link bandwidth and delay means that
routing performance may be degraded if these parameters vary.

The remainder of this paper is organized as follows. First, we
discuss the previous work on the delay-tolerant routing problem,
demonstrating its limitations. In Section 3, we justify our design
decisions, and detail our overall protocol. We compare the perfor-
mance of our protocol with previous work in Section 4. Finally, we
discuss our conclusions and future work.

2. Related Work
Work on routing protocols for multi-hop wireless networks shows

that it is possible to automatically route in networks, even when
nodes are mobile and the link quality varies. There is a huge body
of work on routing protocols [12, 13, 1, 15] and metrics [16, 4,
5] for this environment. However, these protocols and metrics
find end-to-end paths, and do not support communication between
nodes in different network partitions.

One of the earliest proposals for routing in disconnected net-
works is epidemic routing [19]. It relies on replicating messages
through random exchanges between nodes until all nodes have a
copy of every message. Each node has a buffer where it stores these
messages. When it comes into contact with another node, the two
nodes exchange messages until their buffer contents are synchro-
nized. This approach can achieve high delivery ratios, and operates
without knowledge of the communication pattern. It is well-suited
to networks where the contacts between nodes are unpredictable.
Unfortunately, it is very expensive in terms of the number of trans-
missions and buffer space. In particular, it does not appear that
this approach can scale as the number of messages in the network
grows.

The critical resource in epidemic routing is the buffer. An in-
telligent buffer management scheme can improve the delivery ratio
over the simple FIFO scheme [3]. The best buffer policy evaluated
is to drop packets that are the least likely to be delivered based on
previous history. If node A has met B frequently, and B has met
C frequently, then A is likely to deliver messages to C through B.
Similar metrics are used in a number of epidemic protocol vari-
ants [3, 10, 18]. This approach takes advantage of physical locality
and the fact that movement is not completely random. However,
these protocols still transmit many copies of each message, making
them very expensive.

An approach that uses a single copy of each message is pre-
sented by Jain et al. [9]. They assume that the contact schedule
is completely known in advance, and use this knowledge to create
a number of routing metrics. Their results show that the efficiency
and performance increases with the amount of information used
for the metric. The weakness of this approach is that each node
must have access to accurate schedule data. To provide this infor-
mation, the routing must be manually configured with the contact
schedules, which must be repeated each time the schedule changes.
Handorean et al. explore alternatives for distributing connectivity
information, but they still assume that each node knows its own
connectivity perfectly [7]. It is unclear how the performance will
be affected if the schedules are imprecise, which is the typical case
in the real world, or if there are failures which alter the communi-
cation pattern.

3. Routing Design
Our protocol is a shortest path routing protocol for delay-tolerant

networks. Its design is based on routing in traditional networks,
but some design decisions were modified for this new environment.
First we discuss some of the issues in selecting a path metric and
present the metric we use. Next we investigate when to make rout-
ing decisions, and finally how to distribute topology information.

3.1. Path Metrics For DTNs

Paths must be carefully selected to extract the best performance
from a network. In a DTN, the primary requirement is that mes-
sages are reliably delivered. Thus, delivery ratio is a very impor-
tant metric. Unfortunately, it is not clear how a metric can be
constructed to directly maximize delivery ratio along a path. To

resolve this problem, we follow the same approach as Jain et al.
and choose to minimize the end-to-end delay [9]. This reduces the
amount of time a message occupies buffers in the network, which
intuitively should reduce the number of messages dropped, assum-
ing that buffer overflow is the primary cause of loss.

In a delay-tolerant network, the end-to-end delay has four com-
ponents. First, the message must wait for the next contact to arrive
(waiting time). Next, the data queued ahead of the current mes-
sage must be delivered (queuing delay). The message must then be
transmitted (transmission delay), and finally the signal must propa-
gate to the next hop (latency). Delay is an attractive metric because
these four factors can be combined into a single number, assum-
ing that sufficient information is available. However, to simplify
the discussion in this paper, we assume that links have a very high
throughput and low latency, which means that the waiting time is
the only significant factor. To account for links that have significant
latency, these factors must be added to the expected waiting time to
compute the final metric.

A variety of metrics for minimizing the end-to-end delay in a
DTN have been explored by Jain et al. [9]. However, most of
them require knowledge of future contact arrival times. An excep-
tion is the minimum expected delay (MED). This metric assigns a
cost to each edge equal to the expected waiting time plus the trans-
mission delay. Once this value is computed, the contact schedule
is not needed. Assuming that message arrival times are uniformly
distributed, the waiting time probability distribution is a piecewise
linear function. It is a straightforward application of basic proba-
bility to compute the expected value.

We propose a variant of MED we call the minimum estimated ex-
pected delay (MEED). Instead of computing the expected waiting
time using the future contact schedule, MEED uses the observed
contact history. Previous work has shown that mobility observa-
tions can make predictions with accuracy greater than 80% [17].
This metric differs from previous work because it tries to make a
reasonable prediction about aggregate mobility over the period of
time it takes to deliver a message through the DTN, which could be
hours or days. By contrast, mobility prediction for cellular systems
attempts to guess the next cell location of a mobile node, which
requires predicting mobility for the next few minutes.

To compute this metric, a node records the connection and dis-
connection times of each contact over a sliding history window.
The sliding window size is a tuning parameter that can be adjusted
independently at each node. If the window size is very large, then
the metric will change very slowly. This is good to avoid per-
turbations caused by random changes in the contact schedule, but
also means that it reacts slowly to permanent changes in the topol-
ogy. Conversely, a small window reacts quickly to changes, which
means the metric will be more sensitive to random fluctuations.

When the local link state table changes, the update must be prop-
agated to all nodes in the network. This is an expensive operation.
To reduce the overhead, a node may optionally suppress updates
that it decides are unnecessary. However, it is essential that it con-
tinues to make routing decisions using the table that it last adver-
tised. Our simple implementation propagates an update only if at
least one link weight changed by more than 5%, or if a new contact
has been added.

3.2. Routing Decision Time

The earliest opportunity that the path for a message can be de-
cided is at the source, which is called source routing. This is a
simple approach but it is inappropriate for delay-tolerant networks
because as the message travels closer to the destination, the nodes
will likely have more recent and accurate information about the

C

A

D

B C

A

D

B

(a) (b)

2 2

3 8

2 2

3 0

Figure 1: Per-contact routing

destination’s connectivity. hence it seems natural that these inter-
mediate nodes can make better decisions than the source.

The next time to make forwarding decisions is when a message
arrives at each intermediate node, which is called per-hop routing.
When the message arrives, the node determines the next hop for the
destination and places it in a queue for that contact. This is also not
a good solution for DTNs, as changes to the topology could occur
after the message arrives. This would result in the message waiting
to be forwarded over a sub-optimal link.

In order to make routing decisions with the best possible infor-
mation, we use what we call per-contact routing. Instead of com-
puting the next hop for a message in advance, the routing table
is recomputed each time a contact arrives. This assures that each
routing decision is made with the most recent information. The
disadvantage is that this approach uses more processing resources,
as the routing is recomputed frequently. Additionally, the routing
must be recomputed before any messages may be forwarded. Thus,
there may be some additional delay before a link will be used. As
long as the processing power of the nodes is appropriate for the size
of the network, this delay will not be significant. However, it may
be a limiting factor in scaling this approach to very large networks.

Contacts that arrive infrequently have a high minimum expected
delay because the waiting time is very long. Thus, the shortest
paths will not use these links. However, these links might be very
good when they are available. Since we recompute the routing ta-
ble when a contact arrives, we can take advantage of these links
by temporarily assigning a cost of zero to any contact that is avail-
able. This ”short circuits” the routing decisions made by the link-
state protocol, allowing messages to take advantage of good timing.
This is similar to the approach used in some epidemic routing vari-
ants [3, 18], and to what Handorean et al. call a ”path update” [7].
Per-contact routing combined with this temporary short circuiting
is effective for delay-tolerant networks because it guarantees that
decisions are always made with the most recent information pos-
sible, and it can take advantage of serendipitous contact arrivals to
make the routing more efficient.

For example, imagine we have a network with four nodes. Node
A has a message for node D. There are two possible next hops: B
with a total path cost of 5, and C with a total path cost of 10. This
topology is shown in Figure 1(a). Thus, the current routing state
says the message should wait for B to reach D. However, node C
connects first. Thus, the cost to go from A to C becomes zero, as
shown in Figure 1(b). With per-hop or source routing, the message
would remain queued at A waiting for the path with cost 5, through
node B. However, per-contact routing takes advantage of this un-
foreseen contact and delivers the message to C, where it will wait
for a path with cost 2.

C

A
4

B

6

1

Figure 2: Routing loop caused by short circuit routing

3.3. Impact of Deferring Routing Decisions

Making routing decisions as late as possible seems like a clear
win for delay-tolerant networks because it allows the path taken by
a message to change while it is in transit. For example, consider
the situation where the next hop for a message never arrives due
to a failure. Eventually the routing system can give up waiting for
the contact to arrive. At this point, source or per-hop routing would
drop the message because the connection it was waiting to use has
gone down. However, per-contact routing will simply wait for an
alternate contact.

Unfortunately, this choice does have one drawback. Link state
routing is loop free only if the same topology is used to make all
the routing decisions along the path of a message. Source rout-
ing guarantees that this occurs because all the routing decisions
are made at the source. In connected networks, per-hop routing
assumes that the topology does not change while the message is in
transit. This is reasonable since the end-to-end delay is measured in
milliseconds, and topology changes are relatively rare, but this as-
sumption does not hold for DTNs. If the link weights change while
the data is in transit, it is possible for a packet to get passed between
two nodes indefinitely. For a loop to occur, the link weights must
change enough so that when the packet gets to one of the nodes, the
routing directs the packet back the way it came.

A situation where this loop could occur in a DTN is shown in
Figure 2. Initially, node B has a message for node A, and the
shortest path is BCA. When node C connects to B, the message
is forwarded to C. Now, imagine that the cost of the contact BA
decreases because A connects to B. Meanwhile, the cost of the CA
contact increases to 6 because C has not been connected to A for
some time. At this point, the situation is the mirror image of how
it began. The message would have been delivered if it had stayed
at B. Now if B connects to C, the message will be sent back to
B. If the connectivity pattern is periodic, the message will bounce
between B and C indefinitely. Short circuit routing aggravates this
problem because the link cost between B and C no longer matters,
so the link costs need to fluctuate less.

This problem could be mitigated by adding some hysteresis. In
order to backtrack, the path must improve upon the next best path
by some threshold. The threshold could increase if a node is re-
visited multiple times. We do not implement this solution in our
simulations because it would add a significant amount of complex-
ity. However, a real implementation would need a solution because
while this situation seems unlikely to occur, it would cause signifi-
cant disruption.

3.4. Topology Distribution

Once we have costs for individual links, the information needs
to be distributed throughout the network. Traditional networks typ-
ically use link-state or distance vector algorithms for this purpose,
although other choices are possible. We chose to implement a link-
state routing algorithm for two reasons. The primary reason is that
there is a natural match between flooding in link-state algorithms
and epidemic message distribution. Flooding distributes a copy of
each link state table to all nodes. Epidemic replication distributes

Forwarding

Exchange Updates

Topology Summary

Disconnected

Wait Send
Topology Summary

Wait for Topology
Summary

Wait to Send
Updates

Wait for Updates

Send Messages

connect

 connection idle

 received topology summary

 connection idle

 updates received

 topology changed

 connection idle

Figure 3: The epidemic link state protocol state machine

a copy of each message to all nodes. Thus, we can implement a
link-state protocol in a DTN using an epidemic algorithm, which
has been shown to be very robust.

The secondary reason we chose to implement link-state routing
is that it provides the complete topology at each node, which al-
lows the topology to be updated in a single contact. Thus, if a node
has been disconnected for a long time it can obtain the entire topol-
ogy in a single exchange with any other node. A distance vector
algorithm would only distribute paths that pass through the other
node.

Link-state routing does have its disadvantages. First, each node
must store the entire topology in its routing tables, which could be
larger than the state required for distance vector routing. Second,
merging topology information from multiple nodes becomes more
complicated because there is more information to be synchronized.

3.5. An Epidemic Link State Protocol

Upon connection, nodes exchange summary vectors that list all
the link state tables the nodes have received. Each table is tagged
with a sequence number which permits the nodes to determine
which ones are the most recent. The nodes exchange any missing
updates so that they both have the same topology state. Then they
recompute their routing tables and finally, messages that should be
routed through the other node are forwarded. Since we use per-
contact routing, the metric for each link is temporarily set to zero
to represent the fact that messages can be immediately sent to the
other node. The protocol state, shown in Figure 3, is maintained
individually for each connection.

To estimate the overhead of this protocol the size of each proto-
col message must be determined. There are two protocol messages
exchanged: summary vectors and topology updates. The summary
vector contains one (source id, sequence number) pair for each
node in the network. If we assume each value has a fixed length,

the size of this message scales linearly with the size of the network.
The topology update contains a set of (source id, sequence num-
ber, link partner id, metric) tuples for each contact. In the worst
case, the complete topology must be transmitted. In this case, the
topology update has a size that is �����, where � is the number
of nodes in the network, and � is the degree of each node. If we
assume that the average node degree is constant, this overhead also
scales linearly with the size of the network. As a somewhat realistic
example, if we encode these messages as arrays and assume each
value is a 32-bit integer, an 802.11 packet containing 1 500 bytes
of data can store an update with information about 92 links, which
would be sufficient for a network with 15 nodes with an average
degree of 6. Thus, the overhead is acceptable for small networks,
but may be a problem for very large networks.

4. Performance Evaluation
We evaluate the performance of five delay tolerant network rout-

ing protocols: the earliest delivery (ED) and minimum expected
delay (MED) metrics [9], epidemic routing [19], a variant of MED
that uses per-contact routing (MED Per Contact), and MEED. The
ED protocol is used to illustrate the performance that can be achieved
if complete and accurate contact schedule data is available. MED
and MED Per-Contact are presented to investigate the performance
of per-contact routing. Finally, MEED and Epidemic represent the
performance of protocols that do not require schedule information.
We used the DTN simulator written by Sushant Jain [9]. It is a
simple discrete event simulator that uses FIFO, reliable links with
fixed bandwidth and delay.

4.1. Scenario

In order to give the scenarios a basis in reality, we used real mo-
bility data from extensive wireless LAN traces from Dartmouth
College [2]. These traces log the network activity of more than
2 000 users over two years. The trace files show when each user
connects and disconnects to any of Dartmouth College’s 500 access
points. This data is useful because while the mobility appears to be
random, there are patterns that can be exploited [17]. We used the
traces to create a scenario which represents users forming an ad-
hoc DTN. In our scenario, mobile users carry computing devices
with radios. When they are in range of another user, they exchange
data.

To transform the wireless LAN traces into an ad-hoc DTN, we
consider two nodes to be connected when they are associated with
the same access point at the same time. Access points are also DTN
routers. In order to make the scenarios a manageable size, only a
connected subset of the nodes from the wireless LAN trace are in-
cluded. As an example, consider the wireless LAN scenario shown
in Figure 4(a). At time 1, the trace file will show that the laptop
user is connected to the access point on the left. Later, it moves
out of range of the access point, and at time 2 it associates with the
second access point. A DTN scenario that could be generated from
this data is shown in Figure 4(b). One laptop and one access point
from the original scenario were removed.

4.2. Simulation Parameters

For each simulation we selected 30 nodes that have many op-
portunities to communicate over a period of one month. We in-
clude nodes that connect to another node at least ten times dur-
ing the month. Each node selects another node at random, and bi-
directional traffic is exchanged between the pair. Each node gener-
ates 6 messages every 12 hours during the month, but statistics are
reported for only the messages generated during the second week.

1.

2.

1.

2.

(a) Wireless LAN Scenario (b) Ad-hoc DTN Scenario

Figure 4: Wireless trace converted into a DTN scenario

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0.0 5.0 10.0 15.0 20.0

D
el

iv
er

y
R

at
io

Buffer Space (% Total Traffic)

Delivery Ratio vs Buffer Space (30 nodes, 12 msgs/day/node, 10000 bytes/message)

ED
MED

MED Per Contact
MEED

Epidemic

Figure 5: Delivery ratio with varying buffer size

Each message is 10 000 bytes long. This workload represents two
users exchanging small files or email messages. Each test is per-
formed with 10 different network topologies. Our implementation
does not support reactive fragmentation. We investigate how the
performance of the protocols in the DTN scenario varies depending
on the buffer size and the available bandwidth. In order to measure
the effect of a single parameter, the default values for the buffer
size and bandwidth are both very large. Two metrics are presented:
delivery ratio and latency. We also evaluate the protocol overhead
of MEED.

4.3. Impact of Buffer Size

Looking at the graph of the delivery ratio over buffer size in
Figure 5, we can immediately see that the buffer size has signifi-
cant impact on the Epidemic protocol. As the buffer at each node
becomes larger, the delivery ratio increases. Once the buffers are
large enough to contain all the messages generated during the en-
tire simulation (not shown due to space constraints), its delivery
ratio matches ED. The Epidemic protocol only guarantees delivery
if there is sufficient buffer to have a copy of every message at every
node. If there is insufficient buffer, then some messages must be
dropped. Thus, there is a very predictable relationship between the
buffer size and the delivery ratio.

The other protocols require much less buffer space because they
use a single copy of each message. Only when the buffer size drops
below 10% of the total traffic generated does the delivery ratio start
to decrease. MEED’s delivery ratio is within approximately 5% of
the best protocols. Considering that this protocol has no knowledge
about the network topology, this is respectable. In a buffer con-
strained network, MEED has much better performance than Epi-
demic routing.

Looking at the latency results, shown in Figure 6, we can see

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.0% 5.0% 10.0% 15.0% 20.0%

La
te

nc
y

(h
ou

rs
)

Buffer Space (% Total Buffer)

Latency vs Buffer Space (30 nodes, 12 msgs/day/node, 10000 bytes/message)

ED
MED

MED Per Contact
MEED

Epidemic

Figure 6: Delivery latency with varying buffer size

-60.0%

-50.0%

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

0.0% 5.0% 10.0% 15.0% 20.0%

P
er

ce
nt

 Im
pr

ov
em

en
t o

f D
el

iv
er

y
R

at
io

Buffer Space (% Total Traffic)

Improvement With Hop-By-Hop Flow Control (30 nodes, 12 msgs/day/node, 10000 bytes/message)

ED
MED

MED Per Contact
MEED

Figure 7: Improvement with hop-by-hop flow control

that the delay for the Epidemic protocol is much lower than the
other protocols. This is because when the buffer is small, it drops
the oldest messages which are then excluded from the delay com-
putation. When the buffer is large enough, the delay for Epidemic
matches ED. Using per-contact routing with MED decreases the
latency significantly. MEED’s latency is similar to that of MED,
even though it uses per-contact routing and uses a similar metric.
The reason is that MEED must estimate the connectivity, so in some
cases it makes bad routing decisions.

These protocols use the “drop tail” queue policy. Thus, if there is
insufficient buffer space when a message arrives, it is dropped. This
source of loss could be reduced by using hop-by-hop flow control,
so that the message is only sent to the next hop if sufficient buffer
is available. This scheme has been shown to be effective at deal-
ing with congestion in wireless sensor networks [8]. The improve-
ment when using flow control is shown in Figure 7. This small
change increases the delivery ratio when the buffer is the limiting
factor. Without per-contact routing, flow control makes the deliv-
ery ratio decrease when the buffers are extremely small, because
the congestion makes it impossible to deliver any messages in the
network. Per-contact routing works around this problem by taking
advantage of alternate routes. From these results, it seems that hop-
by-hop flow control is a significant improvement for dealing with
temporary buffer shortages.

4.4. Impact of Bandwidth

The results with variable bandwidth, shown in Figure 8, indi-
cate that this scenario is not very sensitive to bandwidth. This is
likely because many contacts are connected for long periods of
time (hours). This means that a significant volume of traffic can
be delivered over even very slow links.

Interestingly, MED and ED seem to be affected by the reduced
bandwidth more than the other protocols. This is likely because
these two protocols use source routing, and thus they cannot adapt
with the traffic load. With the other protocols, if a message is not
sent to its next hop due to queuing delay, it can take an alternate
path.

The results for the latency in Figure 9 are similar. The latency
for ED is very sensitive to the bandwidth because it relies on the
precise timing between multiple contacts. As the queuing delay in-
creases, this timing becomes unreliable. MED, MED per-contact,
and MEED are less sensitive to this issue because their path is based
on the average waiting time for the contacts, and does not rely on
the timing between contacts. Epidemic routing has the lowest la-
tency in this scenario because it tries all paths in the network simul-
taneously.

4.5. Protocol Overhead

In order to measure the overhead introduced by the epidemic dis-
tribution of the MEED metric, we generated 10 topologies from the
Dartmouth data with different sizes. We simulated them for one
month without any traffic, and discarded the overhead in the first
week. The protocol is initiated each time a connection is estab-
lished, so if a scenario has more connections it will generate more
overhead. To compensate for this, we normalized the overhead by
dividing the total protocol bytes by the total number of connections.
This gives us the average bytes of overhead that is exchanged each
time we establish a connection.

The average overhead with the 90% confidence interval is shown
in Figure 10. The overhead appears to grow with �����, and not
linearly as was predicted before. The previous result assumed that
the average degree of the nodes was constant. In our scenario,
nodes that share an access point form a clique, which means that
adding nodes tends to increase the average node degree.

The actual amount of data exchanged is still reasonable. With
a network of 50 nodes, less than 10 kB is exchanged each time a
connection comes up. This will take less than a tenth of a second
to transmit at 802.11’s base rate of 1 Mbps. This is a tiny portion
of the bandwidth, even if the contact is only up for a few seconds.
With 100 nodes, the average overhead per connection is around 40
kB, which is more significant but still reasonable for high speed
wireless LAN technologies. This overhead could quickly become
unmanageable, which indicates that hierarchical routing would be
necessary for very large deployments.

5. Conclusions and Future Work
We introduced the minimum estimated expected delay (MEED)

path metric, which uses observed information to estimate wait-
ing times for each contact. We presented an epidemic protocol
for propagating topology updates through a delay-tolerant network.
The result is a routing system that can deliver data in a DTN with-
out any knowledge about the communication schedules. We have
shown through simulations that it approaches the performance of
protocols that have complete knowledge of the network topology.

Epidemic routing also does not require topology information,
and the results show that it performs very well. However, MEED
achieves 96% of epidemic routing’s delivery ratio using only a sin-

0.750

0.800

0.850

0.900

0.950

1.000

0.0 100.0k 200.0k 300.0k 400.0k 500.0k 600.0k 700.0k 800.0k 900.0k 1.0M

D
el

iv
er

y
R

at
io

Bandwidth (bits/s)

Delivery Ratio vs Bandwidth (30 nodes, 12 msgs/day/node, 10000 bytes/message)

ED
MED

MED Per Contact
MEED

Epidemic

Figure 8: Delivery ratio with varying link bandwidth

70.0

75.0

80.0

85.0

90.0

95.0

100.0

105.0

110.0

115.0

120.0

0.0 100.0k 200.0k 300.0k 400.0k 500.0k 600.0k 700.0k 800.0k 900.0k 1.0M

La
te

nc
y

(h
ou

rs
)

Bandwidth (bits/s)

Latency vs Bandwidth (30 nodes, 12 msgs/day/node, 10000 bytes/message)

ED
MED

MED Per Contact
MEED

Epidemic

Figure 9: Delivery latency with varying link bandwidth

0.0

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

M
E

E
D

 P
ro

to
co

l O
ve

rh
ea

d
(b

yt
es

/c
on

ta
ct

)

Network Size (nodes)

MEED Protocol Overhead vs Network Size

Figure 10: Protocol overhead per connection

gle message, instead of one copy for every node. This is much more
efficient. It also suggests that it might be possible to use the MEED
metric to selectively send a small number of duplicates, in order to
achieve reliable delivery at a low cost.

We presented the concept of per-contact routing, where the rout-
ing tables are recomputed every time a connection is made. This
permits the routing to react to topology changes and take advan-
tage of opportunistic contacts. Indeed, the results show that this
improves the latency and delivery ratio in scenarios with low band-
width. We also showed that hop-by-hop flow control is a useful
strategy for dealing with temporary buffer shortages.

The most important contribution that can be made to delay-tolerant
routing is to build real networks and applications. This is the only
way to determine the real requirements for routing protocols. Pro-
tocols that require no configuration, like the one presented here,
can facilitate this process by reducing the amount of effort required
to deploy and extend these networks.

6. REFERENCES
[1] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and

J. Jetcheva. A performance comparison of multi-hop wireless
ad hoc network routing protocols. In ACM MobiCom, 1998.

[2] Dartmouth College. The Dartmouth Wireless Trace Archive.
http://cmc.cs.dartmouth.edu/data/.

[3] J. Davis, A. Fagg, and B. Levine. Wearable computers as
packet transport mechanisms in highly–partitioned ad–hoc
networks. In IEEE Intl. Symp. on Wearable Computers, 2001.

[4] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In ACM MobiCom, 2003.

[5] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio,
multi-hop wireless mesh networks. In ACM MobiCom, 2004.

[6] K. Fall. A delay–tolerant network architecture for challenged
internets. In ACM SIGCOMM, 2003.

[7] R. Handorean, C. Gill, and G.-C. Roman. Accommodating
transient connectivity in ad hoc and mobile settings. Lecture
Notes in Computer Science, 3001:305–322, March 2004.

[8] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating
congestion in wireless sensor networks. In ACM SenSys,
2004.

[9] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant
network. In ACM SIGCOMM, 2004.

[10] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing
in intermittently connected networks. SIGMOBILE Mobile
Computing Communications Review, 7:19–20, July 2003.

[11] A. Pentland, R. Fletcher, and A. Hasson. Daknet: rethinking
connectivity in developing nations. IEEE Computer,
37:78–83, 2004.

[12] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV) for
mobile computers. In ACM SIGCOMM, 1994.

[13] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance
vector routing. In IEEE WMCSA, 1999.

[14] A. Rabagliati. Wizzy digital courier – how it works.
[15] E. M. Royer and C.-K. Toh. A review of current routing

protocols for ad hoc mobile wireless networks. IEEE
Personal Communications, 6:46–55, 1999.

[16] S. Singh, M. Woo, and C. Raghavendra. Power-aware
routing in mobile ad hoc networks. In ACM MobiCom, 1998.

[17] L. Song, D. Kotz, R. Jain, and X. He. Evaluating location
predictors with extensive wi-fi mobility data. In IEEE
INFOCOM 2004, 2004.

[18] K. Tan, Q. Zhang, and W. Zhu. Shortest path routing in
partially connected ad hoc networks. In IEEE GLOBECOM,
2003.

[19] A. Vahdat and D. Becker. Epidemic routing for partially
connected ad hoc networks. Technical Report CS-200006,
Duke University, Apr 2000.

